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I. PROJECT DESCRIPTION, OBJECTIVES AND PROGRESS 

 

Project description and objectives 

The FY2019-2020 goal was to perform cost-optimization analysis of electricity generation derived 

from offshore wind, ocean current, and wave energy off the North Carolina coast and evaluate the 

potential role of these technologies in the state’s future generation portfolio. Building on our 

previous work, we performed a novel portfolio analysis using hourly data and identified the most 

promising offshore locations and generation technologies. Additionally, we integrated the optimal 

offshore energy portfolio into our open source capacity expansion model of the NC electric power 

sector to evaluate the cost-effectiveness of offshore renewable energy in North Carolina. The intent 

is to provide two deliverables: (1) an analysis that demonstrates how different renewable resources 

can be deployed in a cost-optimal configuration off the North Carolina coast considering hourly 

energy data, and (2) a modeling tool that will be made available to investors and researchers.   

Summary of progress 

We acquired hourly data associated with offshore wind, wave, and ocean current, and converted 

this raw data into synthetic time series of electricity production at different site locations. 

Additionally, we formalized a cost structure for all these technologies in North Carolina, 

considering characteristics such as distance from shore and deployment depth.  We also developed 

a portfolio optimization model using Python as a modeling platform to integrate the offshore 

energy resources and performed simulations with different combinations of wave, wind, and ocean 

current turbines. Finally, we evaluated these different portfolios in an open-source framework for 

conducting energy system analysis (Temoa). In these analyses, we were able to better understand 

how the North Carolina electricity system behaves when combined with these different offshore 

renewable energy technologies. Figure 1 is a flow diagram that briefly describes the main 

development steps, which are further discussed below. 

 
Figure 1. Flow diagram summarizing the project stages. 



4 
 

Wind Data 

Hourly offshore wind speed data is drawn from the NREL Wind Integration National Dataset 

(WIND) Toolkit (NREL, 2019). The dataset is represented in 2 km  2 km grid cells ranging from 

2007-2013. Wind speed is converted to energy using the same assumptions adopted in NREL 

(2016) for offshore wind, which include the selection of feasible site locations and wind turbine 

characteristics. Each 2 km  2 km grid cell can accommodate four 6 MW turbines with hub height 

of 100 m. As study domain, we adopted (78°00’ W to 74°00’ W, 34°00’ N to 36°33’ N), which 

includes 1692 potential wind turbine sites after eliminating those locations not considered in NREL 

(2016). 

  
Figure 2. Capacity facto (CF) of the available 

wind energy production sites across the study 

domain.  

Figure 3. Expected levelized cost of electricity 

(LCOE) at individual site locations with a 

deployment of 50 turbines. 

 

Wave Data 

For wave energy, our data comes from the WAVEWATCH III model (NOAA, 2019) at the 

resolution of 1/15° and time-frequency of 3 hours, ranging from the years 2005-2019. In order to 

convert the historical values of significant wave height 𝐻𝑠 and wave period 𝑇𝑝 to energy, we used 

the scaled version of the Pelamis energy conversion model developed by the University of 

Edinburgh in 2006. This is an attenuator type model, with a rated power of 1.5 MW, which 

performed significantly better for the North Carolina region when compared with other models 

such as PB150 from OPT (2014), RM3 from SANDIA (2014), and Wavebob (2012).  

In this case, the selection of feasible site locations is solely dependent on the chosen turbine model. 

For the Pelamis energy converter, its project documentation (University of Edinburgh, 2006) limits 

the deployment depth to 50-150m, which was the only constraint used in our model representation 

of wave energy converters. 
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Figure 4. Capacity factor (CF) of the available 

wave energy production sites across the study 

domain.  

Figure 5. Expected levelized cost of electricity 

(LCOE) value at individual site locations 

associated with a deployment of 100 wave 

turbines. 

 

Ocean Data 

For hindcasts of ocean current speed in the North Carolina region, two different models were 

considered, namely HYCOM/NCODA (HYCOM, 2020) and MABSAB (Gong et al., 2015). 

The Hybrid Coordinate Ocean Model (HYCOM) is a primitive equation ocean general circulation 

model that evolved from the Miami Isopycnic-Coordinate Ocean Model (MICOM). It is a multi-

institutional effort sponsored by the National Ocean Partnership Program and has been used in 

many studies for the assessment of hydrokinetic energy resources. The MABSAB model (Gong et 

al., 2015) to hindcast and diagnose ocean circulation variability in the Middle Atlantic Bight 

(MAB) and the South Atlantic Bright (SAB). It is based on the Regional Ocean Modeling System 

(ROMS), a high-resolution, free-surface, terrain-following coordinate oceanic model extensively 

explored in the literature. For open boundary conditions, the MABSAB model is nested inside the 

1/12° global data assimilative HYCOM/NCODA output, assuring consistency between the 

hindcast generated by the two models used in this work.  

Because the process of simulating ocean circulation models is extremely complex, often requiring 

a substantial amount of computational resources, there are very few datasets available with 

high spatial resolution and high time-frequency. In the case of the North Carolina region, however, 

ocean current velocity data from January 2009 to December 2013 is available for 

HYCOM/NCODA at 3-hour discretization and 1/12° grid resolution (~8×8km), and for MABSAB 

at daily discretization and 2×2km grid resolution. 

In this work, we constructed a synthetic dataset with the objective of capturing the hourly 

variability present in HYCOM, while keeping the higher MABSAB spatial resolution. This 

synthetic dataset is created as follows: 



6 
 

1) First, normalize the HYCOM data. In each day of ocean current speed from the 

HYCOM/NCODA dataset, the eight current estimates (3-hour discretization) for each grid 

cell are divided by their correspondent average. 

2) Next, for each MABSAB cell, find the closest HYCOM cell and transfer the data of 

HYCOM into the MABSAB resolution (2×2km) multiplying the normalized HYCOM data 

(eight estimates each day) by the daily ocean current speed of MABSAB.  

This synthetic dataset for ocean current speed has 3-hour time resolution and 2×2km grid 

resolution ranging from January 2009 to December 2013, and is used thereafter in this work for 

the analysis of the ocean current resources in the North Carolina. 

To convert ocean current energy to electrical energy, we used as reference the ocean current turbine 

model RM4 detailed in Neary (2017), which has a rated capacity of 4MW. However, a few 

modifications were made to the model in order to adjust the turbine performance to the 

characteristics of the North Carolina region. A detailed description of all changes, as well as the 

cost breakdown structure of the new turbine model, is detailed in Faria (2020).  

In this project, the maximum deployment depths of 100-2500m assumed in the RM4 model 

(Neary, 2017) were used to define the set of feasible site locations studied. Also, in order to reduce 

the size of the dataset analyzed, sites with less than 0.01 of capacity factor were excluded from our 

investigation. 

  
Figure 6. Capacity factor (CF) of the available 

ocean energy production sites across the study 

domain. 

Figure 7. Expected levelized cost of electricity 

(LCOE) value at individual site locations 

associated with a deployment of 50 turbines. 
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Portfolio Optimization Model 

In order to optimize the selection of site locations for each energy technology, we apply the mean-

variance portfolio theory (Markowitz et al., 2000). In our work, the optimization model minimizes 

the variance of the total generated energy of the portfolio subject to a limit on the LCOE value. 

This model is described in Equations (1-6).  

In addition to (2), which bounds the LCOE value, the model also has constraints related to the total 

number of turbines deployed (3), maximum number of turbines per site location (4), and maximum 

distance of deployment between sites of the same technology (5). This last constraint is used to 

ensure the feasibility of the energy collection system. In (5), the integer variable 𝑣 is responsible 

for determining the center site location from which all deployments of a particular technology will 

maintain a distance less than a predefined value (30km for Model I). Figure 8.a shows in light red 

a region of deployment based on 𝑣45 = 1. 

The complexity of the model described above increases significantly with the number of integer 

variables, which are used to designate the number of site locations. As a result, the model based 

on Equations (1-6) for the entire North Carolina coast can be very challenging, in some cases 

making the model computationally intractable. Thus, a relaxation procedure was developed to help 

decrease the computational complexity of the problem. 

 

The relaxed version of Model I is represented in Equations (7-12). In this version, the integer 

variable (𝑦) is substituted by a real variable 𝑥, and the integer variables responsible for ensuring 

the maximum deployment distance between site locations (𝑣) are also substituted by an upscaled 

version 𝑤 (Figure 8), such that the total number of integer variables in Model II can be decreased 

even further.  

Mathematically, the results of Model II are a lower bound (since it is a relaxation) on the original 

model, but nonetheless, it is possible to extract important information about the location of the 

most promising site locations using the integer variables 𝑤. In this way, we developed a modeling 

strategy whereby the results of Model II are used to constrain the feasible space of Model I by 

reducing the number of integer variables and obtaining a feasible bound for the original problem. 

The quality of our algorithm can be assessed by the gap between both simulations, which proved 

to be small for all scenarios investigated, meaning that your procedure can achieve results very 

close to the global optimal solution. 

Figure 8 illustrates the difference between the 𝑤 and 𝑣 variables. For each feasible site location, 

there exists a correspondent 𝑣 variable in the formulation for Model I; if the value of this variable 

is equal to one it means that all deployments of a certain technology (𝑦 variables) will be placed 

in a radius 𝑅 (5km in the example of this figure) of this site location. The 𝑤 variables used in the 

formulation for Model II are an upscaled version of the 𝑣 variables, such that one 𝑤 variable may 

represent more than one nearby 𝑣 variable. As such, if a specific 𝑤 variable is equal to one, it 
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means that all deployments of a certain technology will be placed in a radius 𝑅 of at least one of 

the site locations aggregated under the 𝑤 variable. 

NOMENCLATURE 

Decision Variables Sets 

𝑣:   
True or False for Active Site Perimeter 

({0,1}), 𝑣𝑖  for 𝑖 ∈ 𝐼  
𝐸𝐶:  Set of Energy Conversion Technologies 

𝑤: 
True or False for Active Site Perimeter 

({0,1}), 𝑤𝑘  for 𝑘 ∈ 𝑊 
𝐷𝑊𝑘

<30𝑘𝑚 
Set of Site Locations That are Less Than 

30km Away from Site  𝑘 ∈ 𝑊. 

𝑥:   
Number of Turbines in Each Site  

Location (ℝ+) 
𝐼: Set of All Site Location (original scale) 

𝑦:   
Number of Turbines in Each Site  

Location (ℕ+) 
𝐼𝐸𝐶 ⊂ 𝐼: 

Set of All Site Location for the technology 

𝐸𝐶 

𝐷𝑖
<30𝑘𝑚: 

Set of Sites Locations That are Less Than 

30km Away from Site 𝑖 
𝑊 Upscaled Set of Site Locations 

  𝑊𝐸𝐶 ⊂ 𝑊 
Upscaled Set of Site Locations for the 

technology 𝐸𝐶 

Deterministic Parameters 

𝛴: Variance-covariance Matrix 𝐿𝐶𝑂𝐸: LCOE Target [$/MWh] 

𝐶𝑂𝑆𝑇𝑖: 
Annualized Cost per Turbine of the 𝑖 th 

Site Location [$] 
𝑁𝑇𝐸𝐶

: 
Total Number of Turbines For Each 

Technology (EC) 

𝐸𝑁𝐸𝑅𝐺𝑌𝑖: 
Expected Generated Energy Per Year Per 

Turbine for the 𝑖th Site Location [MWh] 
𝑁𝑈𝐸𝐶

: Maximum Number of Turbines per Site 

Location per Energy Technology (EC) 

Functions 

𝑠𝑖𝑧𝑒(∙) Number of Elements in a Given Set   

 

Model (I): min  𝑌𝑇Σ 𝑌 (1) 

s. t.  ∑(𝐶𝑂𝑆𝑇𝑖) ∙ 𝑦𝑖

𝑖∈𝐼

≤ 𝐿𝐶𝑂𝐸 ∑(𝐸𝑁𝐸𝑅𝐺𝑌𝑖) ∙ 𝑦𝑖

𝑖∈𝐼

  (2) 

∑ 𝑦𝑖

𝑖∈𝐼𝐸𝐶

= 𝑁𝑇𝐸𝐶
 ∀ 𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} (3) 

𝑦𝑖 ≤ 𝑁𝑈𝐸𝐶
 

∀ 𝑖 ∈ 𝐼𝐸𝐶 ,  𝑎𝑛𝑑  

𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} 
(4) 

∑ 𝑦𝑖 ≤ (1 − 𝑣𝑖) ∙ 𝑠𝑖𝑧𝑒(𝐼𝐸𝐶)

𝑘∈𝐷𝑖
<30𝑘𝑚

 ∀ 𝑖 ∈ 𝐼𝐸𝐶 ,  𝑎𝑛𝑑 

𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} 
(5) 

∑ 𝑣𝑖

𝑖∈𝐼𝐸𝐶

= 1 ∀ 𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} (6) 

   

Model (II): min  𝑋𝑇Σ X (7) 

s. t.  ∑(𝐶𝑂𝑆𝑇𝑖) ∙ 𝑥𝑖

𝑖∈𝐼

≤ 𝐿𝐶𝑂𝐸 ∑(𝐸𝑁𝐸𝑅𝐺𝑌𝑖) ∙ 𝑥𝑖

𝑖∈𝐼

  (8) 

∑ 𝑥𝑖

𝑖∈𝐼𝐸𝐶

= 𝑁𝑇𝐸𝐶
 ∀ 𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} (9) 

𝑥𝑖 ≤ 𝑁𝑈𝐸𝐶
 ∀ 𝑖 ∈ 𝐼𝐸𝐶 ,  𝑎𝑛𝑑  (10) 
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𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} 

∑ 𝑥𝑖 ≥ 𝑤𝑘 𝑁𝑇𝐸𝐶

𝑖∈𝐷𝑊𝑘
>30𝑘𝑚

 ∀ 𝑘 ∈ 𝑊𝐸𝐶 ,  𝑎𝑛𝑑 

𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} 
(11) 

∑ 𝑤𝑖

𝑖∈𝐼𝐸𝐶

= 1 ∀ 𝐸𝐶 ∈ {𝑊𝑖𝑛𝑑; 𝑂_𝐶𝑢𝑟𝑟𝑒𝑛𝑡; 𝑊𝑎𝑣𝑒} (12) 

Figure 8: Example of How Model II Relaxes the Constraint that Limits the Length of the energy 

Collection System (Constraint 5 -Model I). The Relaxation Reduces the Number of Integer 

Variables by Grouping Nearby Grid Cells (𝑣) in the Variables (𝑤). This Grouping Procedure is 

Such that the Any Solution from Model I is Still Achievable from Model II.  

 

Portfolio Optimization Results 

Figure  9 shows the efficient frontier for different combinations of ocean energy portfolios. For 

each curve, there is a corresponding series of three numbers that indicate the installed capacity of 

wind, wave, and ocean current. The y-axis represents the LCOE and the x-axis represents the 

standard deviation in the hourly capacity factor (CF). Additionally, the rated power for the turbine 

models is 6 MW for wind, 1.5 MW for wave, and 4 MW for ocean current. 

In Figure 9, a high level of energy variability implies a risk of low electricity production in a given 

year and more difficulty integrating these technologies into the electrical system, given that the 

variation in output that must be absorbed by the system. 

The results indicate that the portfolios with only wind or wave have very high energy variability 

compared to the portfolios with only ocean current. Figure 9 also indicates a very strong 

complementarity between wind and wave energy, since both have very high variability when 

deployed alone, which decreases significantly when both technologies are deployed together. 

Finally, our results also show the relevance of ocean current technology: despite its high LCOE, 
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the portfolios with wind/ocean current and wave/ocean current achieved significantly lower 

variances.  

Although most of these technologies are still in their early stages of development with non-

attractive LCOEs, the results presented in Figure 9 show the importance of an integrated planning 

strategy to accelerate the deployment of these energy systems in the North Carolina Coast. 

 
Figure 9: Efficient frontier for different ocean energy portfolios. The three numbers associated 

with each curve (from left to right) represent the allowable MW capacity of wind, wave, and 

ocean current technology. 

 

In order to evaluate the cost-effectiveness of the portfolios presented in Figure 9, we used the open 

source energy system optimization model called ‘Temoa’ to estimate the reduction in portfolio-

specific LCOE that would enable the deployment of these offshore portfolios in North Carolina. 

The Temoa-compatible input dataset represents the North Carolina grid mix, and utilizes linear 

optimization to perform capacity expansion and system dispatch through 2050. In these model 

runs, the offshore energy portfolios shown in Figure 9 must complete with other sources of 

electricity generation, including onshore wind, solar PV, natural combined-cycle turbines, nuclear, 

coal steam plants. 

Table 1 shows the LCOE values that each portfolio should reach in order to be deployed in North 

Carolina in 2050 and 2030. Offshore wind is the technology closest to being deployed in North 



11 
 

Carolina, needing a reduction of at least 34% to reach deployment by 2050, and 60% to reach 

deployment by 2030.  

Portfolio 3, which includes only ocean current technology, is also interesting. This portfolio ended 

up being deployed by the model in 2030 with an LCOE of 76 [$/MWh], much higher than any 

other case analyzed in the same year, showing the potential relevance of this technology in North 

Carolina. 

It is also important to mention that wind energy technology is at a more advanced stage of 

development compared to wave or ocean current technology. As a result, the opportunities for 

significant cost reduction may be much more limited for wind energy compared to the other 

analyzed options.  

 

Table 1: Percentage Reductions in the LCOE Values to Achieve Deployment in NC 

Portfolio  
Current LCOE Estimate 

[$/MWh] (2020) 

NC Energy System (TEMOA) 

Required LCOE  

(% Reduction from the Current Values)  

2050 2030 

(1) 
600MW Offshore Wind & 

200MW Ocean Current 
152 77 (49%) 48 (68%) 

(2) 300MW Offshore Wind 114 75 (34%) 46 (60%) 

(3) 200MW Ocean Current 246 81 (67%) 76 (69%) 

(4) 150MW Wave 284 82 (71%) 50 (83%) 

(5) 
300MW Wind & 

150MW Wave 
178 84 (53%) 52 (71%) 

(6) 
200MW Ocean Current & 

150MW Wave 
262 80 (70%) 50 (81%) 

(7) 

600MW Offshore Wind & 

200MW Ocean Current  & 

150MW Wave 

176 83 (53%) 50 (71%) 

 

II. CONCLUSIONS AND MAJOR CONTRIBUTIONS 

In this project, we proposed the application of mean-variance portfolio theory in the site selection 

of renewable energy technologies while also considering constraints pertaining to the length of the 

energy collection system and the deployment of offshore wind, wave, and ocean current capacity. 

A convex relaxation of our original formulation was implemented to allow the representation of a 

larger number of site locations without leading to prohibitive computational times. Our model is 

used to perform a techno-economic assessment of offshore renewable energy in North Carolina, 
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and the optimal portfolios (with different shares of wind, wave, and ocean current) are further 

incorporated in a capacity expansion model, leading to valuable insights regarding how much the 

portfolio-specific LCOEs should decrease in order to get deployed in North Carolina.  

This year’s work represents a significant extension of existing work, allowing for more detailed 

portfolio optimization where structural constraints related to the energy collection system are 

incorporated directly into a large-scale mixed-integer nonlinear optimization. This work is also the 

first to evaluate the optimal site selection of wind, wave, and ocean current simultaneously, which 

provides valuable information regarding the optimal mix of these resources in North Carolina. In 

addition, this work establishes cost targets to enable deployment in the future. 

 

III.  PUBLICATIONS AND PRESENTATIONS  
 

V. A. D. Faria, A. R. Queiroz and J. DeCarlois (2020). Optimizing Investments in NC Offshore Renewable 

Energy. 2020 NC Renewable Ocean Energy Symposium. 

 

  

IV.  STUDENTS 

Victor Augusto Duraes de Faria. Degree: Ph.D. in Operations Research. Expected completion: 

2023. 

 

V. EXPENSE REPORT 

 Allocation Expense to date Encumbered to Date Balance 

Total expenses $32,420 $32,420 $0 $0 

 

References 

 

B. Li, A. de Queiroz, J.F. DeCarolis, J. Bane, R. He, A.G. Keeler, V.S. Neary (2017). The 

economics of electricity generation from Gulf Stream currents. Energy, 134: 649-658. 

 

Gong Y, He R, Gawarkiewicz GG, Savidge DK (2015). Numerical investigation of coastal 

circulation dynamics near Cape Hatteras, North Carolina. Ocean Dyn, 65:1–15. 

 

H.M. Markowitz, G.P. Todd (2000). Mean-Variance Analysis in Portfolio Choice and Capital 

Markets. John Wiley & Sons. 

 

HYCOM (2020). Hybrid Coordinate Ocean Model. Available at: https://www.hycom.org/. Last 

access on April 27, 2020. 

 



13 
 

J. B. Frandsen, M. Doblaré and P. Rodríguez-Cortés (2012). Preliminary technical assessment of 

the Wavebob energy converter concept. Abengoa Seapower. 

 

NOAA (2019). NOAA WAVEWATCH III. Available at:  

https://polar.ncep.noaa.gov/waves/viewer.shtml?-(none)-. Last access on January 20, 2020. 

 

NREL (2016). Final Report on the Creation of the Wind Integration National Dataset (WIND) 

Toolkit and API.  

 

NREL (2019). Wind Integration National Dataset Toolkit. Available at: 

https://www.nrel.gov/grid/wind-toolkit.html. Last access in November 11, 2019. 

 

Ocean Power Technologies- OPT (2014). PB150 Deployment and Ocean Test Project.  

 

University of Edinburgh (2006). Matching Renewable Electricity Generation with Demand. 

Scottish Executive 

 

V.S. Neary, M . Previsic, R.A. Jepsen, M.J. Lawson, Y. Yu, A.E. Copping, A.A. Fontaine, K.C. 

Hallett, D.K. Murray (2014). Methodology for Design and Economic Analysis of Marine Energy 

Conversion (MEC) Technologies.  

 

V. Faria, A. de Queiroz, J.F. DeCarolis (2020).  Ocean Current Turbine Specifications for The NC 

Region. Available at: https://github.com/vaduraes/OceanProject. Last access in August 10, 2020 

 

https://polar.ncep.noaa.gov/waves/viewer.shtml?-(none)-

